Serveur d'exploration sur Pittsburgh

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Lithography-free fabrication of reconfigurable substrate topography for contact guidance.

Identifieur interne : 000440 ( Main/Exploration ); précédent : 000439; suivant : 000441

Lithography-free fabrication of reconfigurable substrate topography for contact guidance.

Auteurs : Pitirat Pholpabu [États-Unis] ; Stephen Kustra [États-Unis] ; Haosheng Wu [États-Unis] ; Aditya Balasubramanian [États-Unis] ; Christopher J. Bettinger [États-Unis]

Source :

RBID : pubmed:25468368

Descripteurs français

English descriptors

Abstract

Mammalian cells detect and respond to topographical cues presented in natural and synthetic biomaterials both in vivo and in vitro. Micro- and nano-structures influence the adhesion, morphology, proliferation, migration, and differentiation of many phenotypes. Although the mechanisms that underpin cell-topography interactions remain elusive, synthetic substrates with well-defined micro- and nano-structures are important tools to elucidate the origin of these responses. Substrates with reconfigurable topography are desirable because programmable cues can be harmonized with dynamic cellular responses. Here we present a lithography-free fabrication technique that can reversibly present topographical cues using an actuation mechanism that minimizes the confounding effects of applied stimuli. This method utilizes strain-induced buckling instabilities in bilayer substrate materials with rigid uniform silicon oxide membranes that are thermally deposited on elastomeric substrates. The resulting surfaces are capable of reversible of substrates between three distinct states: flat substrates (A = 1.53 ± 0.55 nm; Rms = 0.317 ± 0.048 nm); parallel wavy grating arrays (A∥= 483.6 ± 7.8 nm; λ∥= 4.78 ± 0.16 μm); perpendicular wavy grating arrays (A⊥= 429.3 ± 5.8 nm; λ⊥= 4.95 ± 0.36 μm). The cytoskeleton dynamics of 3T3 fibroblasts in response to these surfaces was measured using optical microscopy. Fibroblasts cultured on dynamic substrates that are switched from flat to topographic features (FLAT-WAVY) exhibit a robust and rapid change in gross morphology as measured by a reduction in circularity from 0.30 ± 0.13 to 0.15 ± 0.08 after 5 min. Conversely, dynamic substrate sequences of FLAT-WAVY-FLAT do not significantly alter the gross steady-state morphology. Taken together, substrates that present topographic structures reversibly can elucidate dynamic aspects of cell-topography interactions.

DOI: 10.1016/j.biomaterials.2014.10.078
PubMed: 25468368


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Lithography-free fabrication of reconfigurable substrate topography for contact guidance.</title>
<author>
<name sortKey="Pholpabu, Pitirat" sort="Pholpabu, Pitirat" uniqKey="Pholpabu P" first="Pitirat" last="Pholpabu">Pitirat Pholpabu</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh 15213, PA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh 15213, PA</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">Pittsburgh</settlement>
</placeName>
<orgName type="university">Université Carnegie-Mellon</orgName>
</affiliation>
</author>
<author>
<name sortKey="Kustra, Stephen" sort="Kustra, Stephen" uniqKey="Kustra S" first="Stephen" last="Kustra">Stephen Kustra</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh 15213, PA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh 15213, PA</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">Pittsburgh</settlement>
</placeName>
<orgName type="university">Université Carnegie-Mellon</orgName>
</affiliation>
</author>
<author>
<name sortKey="Wu, Haosheng" sort="Wu, Haosheng" uniqKey="Wu H" first="Haosheng" last="Wu">Haosheng Wu</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh 15213, PA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh 15213, PA</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">Pittsburgh</settlement>
</placeName>
<orgName type="university">Université Carnegie-Mellon</orgName>
</affiliation>
</author>
<author>
<name sortKey="Balasubramanian, Aditya" sort="Balasubramanian, Aditya" uniqKey="Balasubramanian A" first="Aditya" last="Balasubramanian">Aditya Balasubramanian</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh 15213, PA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh 15213, PA</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">Pittsburgh</settlement>
</placeName>
<orgName type="university">Université Carnegie-Mellon</orgName>
</affiliation>
</author>
<author>
<name sortKey="Bettinger, Christopher J" sort="Bettinger, Christopher J" uniqKey="Bettinger C" first="Christopher J" last="Bettinger">Christopher J. Bettinger</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh 15213, PA, USA; Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh 15213, PA, USA. Electronic address: cjbetti@gmail.com.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh 15213, PA, USA; Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh 15213, PA</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">Pittsburgh</settlement>
</placeName>
<orgName type="university">Université Carnegie-Mellon</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25468368</idno>
<idno type="pmid">25468368</idno>
<idno type="doi">10.1016/j.biomaterials.2014.10.078</idno>
<idno type="wicri:Area/PubMed/Corpus">000988</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000988</idno>
<idno type="wicri:Area/PubMed/Curation">000988</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000988</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000988</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000988</idno>
<idno type="wicri:Area/Ncbi/Merge">004241</idno>
<idno type="wicri:Area/Ncbi/Curation">004241</idno>
<idno type="wicri:Area/Ncbi/Checkpoint">004241</idno>
<idno type="wicri:Area/Main/Merge">000440</idno>
<idno type="wicri:Area/Main/Curation">000440</idno>
<idno type="wicri:Area/Main/Exploration">000440</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Lithography-free fabrication of reconfigurable substrate topography for contact guidance.</title>
<author>
<name sortKey="Pholpabu, Pitirat" sort="Pholpabu, Pitirat" uniqKey="Pholpabu P" first="Pitirat" last="Pholpabu">Pitirat Pholpabu</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh 15213, PA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh 15213, PA</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">Pittsburgh</settlement>
</placeName>
<orgName type="university">Université Carnegie-Mellon</orgName>
</affiliation>
</author>
<author>
<name sortKey="Kustra, Stephen" sort="Kustra, Stephen" uniqKey="Kustra S" first="Stephen" last="Kustra">Stephen Kustra</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh 15213, PA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh 15213, PA</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">Pittsburgh</settlement>
</placeName>
<orgName type="university">Université Carnegie-Mellon</orgName>
</affiliation>
</author>
<author>
<name sortKey="Wu, Haosheng" sort="Wu, Haosheng" uniqKey="Wu H" first="Haosheng" last="Wu">Haosheng Wu</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh 15213, PA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh 15213, PA</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">Pittsburgh</settlement>
</placeName>
<orgName type="university">Université Carnegie-Mellon</orgName>
</affiliation>
</author>
<author>
<name sortKey="Balasubramanian, Aditya" sort="Balasubramanian, Aditya" uniqKey="Balasubramanian A" first="Aditya" last="Balasubramanian">Aditya Balasubramanian</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh 15213, PA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh 15213, PA</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">Pittsburgh</settlement>
</placeName>
<orgName type="university">Université Carnegie-Mellon</orgName>
</affiliation>
</author>
<author>
<name sortKey="Bettinger, Christopher J" sort="Bettinger, Christopher J" uniqKey="Bettinger C" first="Christopher J" last="Bettinger">Christopher J. Bettinger</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh 15213, PA, USA; Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh 15213, PA, USA. Electronic address: cjbetti@gmail.com.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh 15213, PA, USA; Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh 15213, PA</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">Pittsburgh</settlement>
</placeName>
<orgName type="university">Université Carnegie-Mellon</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Biomaterials</title>
<idno type="eISSN">1878-5905</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>3T3-L1 Cells</term>
<term>Animals</term>
<term>Biocompatible Materials (chemistry)</term>
<term>Mice</term>
<term>Surface Properties</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux</term>
<term>Cellules 3T3-L1</term>
<term>Matériaux biocompatibles ()</term>
<term>Propriétés de surface</term>
<term>Souris</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Biocompatible Materials</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>3T3-L1 Cells</term>
<term>Animals</term>
<term>Mice</term>
<term>Surface Properties</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Cellules 3T3-L1</term>
<term>Matériaux biocompatibles</term>
<term>Propriétés de surface</term>
<term>Souris</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Mammalian cells detect and respond to topographical cues presented in natural and synthetic biomaterials both in vivo and in vitro. Micro- and nano-structures influence the adhesion, morphology, proliferation, migration, and differentiation of many phenotypes. Although the mechanisms that underpin cell-topography interactions remain elusive, synthetic substrates with well-defined micro- and nano-structures are important tools to elucidate the origin of these responses. Substrates with reconfigurable topography are desirable because programmable cues can be harmonized with dynamic cellular responses. Here we present a lithography-free fabrication technique that can reversibly present topographical cues using an actuation mechanism that minimizes the confounding effects of applied stimuli. This method utilizes strain-induced buckling instabilities in bilayer substrate materials with rigid uniform silicon oxide membranes that are thermally deposited on elastomeric substrates. The resulting surfaces are capable of reversible of substrates between three distinct states: flat substrates (A = 1.53 ± 0.55 nm; Rms = 0.317 ± 0.048 nm); parallel wavy grating arrays (A∥= 483.6 ± 7.8 nm; λ∥= 4.78 ± 0.16 μm); perpendicular wavy grating arrays (A⊥= 429.3 ± 5.8 nm; λ⊥= 4.95 ± 0.36 μm). The cytoskeleton dynamics of 3T3 fibroblasts in response to these surfaces was measured using optical microscopy. Fibroblasts cultured on dynamic substrates that are switched from flat to topographic features (FLAT-WAVY) exhibit a robust and rapid change in gross morphology as measured by a reduction in circularity from 0.30 ± 0.13 to 0.15 ± 0.08 after 5 min. Conversely, dynamic substrate sequences of FLAT-WAVY-FLAT do not significantly alter the gross steady-state morphology. Taken together, substrates that present topographic structures reversibly can elucidate dynamic aspects of cell-topography interactions.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Pennsylvanie</li>
</region>
<settlement>
<li>Pittsburgh</li>
</settlement>
<orgName>
<li>Université Carnegie-Mellon</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<region name="Pennsylvanie">
<name sortKey="Pholpabu, Pitirat" sort="Pholpabu, Pitirat" uniqKey="Pholpabu P" first="Pitirat" last="Pholpabu">Pitirat Pholpabu</name>
</region>
<name sortKey="Balasubramanian, Aditya" sort="Balasubramanian, Aditya" uniqKey="Balasubramanian A" first="Aditya" last="Balasubramanian">Aditya Balasubramanian</name>
<name sortKey="Bettinger, Christopher J" sort="Bettinger, Christopher J" uniqKey="Bettinger C" first="Christopher J" last="Bettinger">Christopher J. Bettinger</name>
<name sortKey="Kustra, Stephen" sort="Kustra, Stephen" uniqKey="Kustra S" first="Stephen" last="Kustra">Stephen Kustra</name>
<name sortKey="Wu, Haosheng" sort="Wu, Haosheng" uniqKey="Wu H" first="Haosheng" last="Wu">Haosheng Wu</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Amérique/explor/PittsburghV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000440 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000440 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Amérique
   |area=    PittsburghV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25468368
   |texte=   Lithography-free fabrication of reconfigurable substrate topography for contact guidance.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25468368" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PittsburghV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Jun 18 17:37:45 2021. Site generation: Fri Jun 18 18:15:47 2021